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A Perturbation Procedure for Nearly Rectangular,
Homogeneously Filled, Cylindrical Waveguides

Brian J. McCartin

Abstract— The cut-off frequencies and propagating modes of
a hollow cylindrical waveguide may be approximated by confor-
mal mapping to a canonical domain followed by the numerical
solution of a Helmholtz-like equation [1]. This letter considers
the problem of how these frequencies and modes change under
a small perturbation of the bounding metallic walls. A proce-
dure is herein presented that produces a perturbation expansion
involving only computations in the unperturbed cross section,
thus avoiding costly additional mappings. Moreover, the resulting
analytical expressions for these frequencies and modes are then
available for optimization of waveguide parameters. An applica-
tion of this procedure is presented together with comparison to
published numerical and experimental results.

I. INTRODUCTION

METHOD FOR calculating the modes of waveguides of

very general cross section by conformal transformation
to a rectangle has been presented in [1]. The general problem
of the conformal mapping of a “towel-shaped” region, such as
a near-rectangle, onto a rectangle has been treated in [2]. In
this letter, we combine these analyzes with a procedure due
to Schrédinger [3] to produce a perturbation expansion for the
cut-off frequencies and modal shapes of a nearly rectangular,
homogeneously filled, cylindrical waveguide.

The procedure presented herein requires only a single con-
formal mapping yet produces an analysis for an entire one-
parameter family of related waveguides. Hence, the resulting
analytical expressions for cutoff frequencies and modal shapes
are available for the optimal design of waveguide parameters.

All numerical computations were performed using MAT-
LAB®. An application of this perturbation procedure to a
high-power waveguide is presented. The cutoff wavelengths
so computed are compared to published numerical and exper-
imental results.

II. FORMULATION

Consider a nearly rectangular waveguide cross section such
as that appearing in Fig. 1. It is assumed that the waveguide
is uniform in the longitudinal direction and is homogeneously
filled with a lossless, isotropic material characterized by per-
mittivity, €, and permeability, u. Such a nearly rectangular
geometry is “towel-shaped,” and as a consequence may be
mapped conformally onto a rectangle by the technique of [2].
The aspect ratio of the rectangle (conformal module) may not
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Fig. 1. Waveguide cross section.

be specified but must be determined. The rectangle is scaled
to have the same area as the physical waveguide cross section.

Denoting the physical plane as the w(= w + #v) plane and
the mapped plane as the z(= z + y) plane, the Helmholtz
equation for the waveguide modes maps to [4]

Paz + dyy + (kz - ,32)|f’(z)|2¢5 =0 6y

under the conformal transformation w = f(z), where k? =
w?pe and B is the propagation constant. Along the metallic
walls, ¢ = 0 for TM-modes and ¢,, = 0 for TE-modes.

Once such a mapping function has been constructed, we
may consider the one-parameter family of related conformal
mappings

w= fs5(z) =24+ 6(f(2) — 2) 2
yielding the area correspondence
[f51? = 1+ 6(2(Ref' — 1)) + 6(1 = 2Ref' + [f])). 3

If the original waveguide was of nearly rectangular cross
section, then f(z) ~ z and |f{(z)|2 = 1 for § = O(1).
The transformed Helmholtz equation

zw + Qbyy = )‘(1 + 5a(w, y) + 52b(377 y))Qb 4)

where X := 32 — k2 and a and b are defined implicitly by (3),
must now be satisfied in the interior of the rectangle subject to
either Dirichlet (TM) or Neumann (TE) boundary conditions.
Note the correspondences 6 = 0 to the rectangle and § = 1
to the original waveguide.

If we discretize this problem using finite differences [5] with
constant spatial increments, (Az, Ay), we obtain the matrix
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Fig. 2. TMj,1 Mode.

generalized eigenvalue problem
M¢ = AN +6A+ 62B)¢ (5)

where M is symmetric and nonpositive definite, IV is positive
and diagonal, and both A and B are diagonal. The cutoff wave-
length of a mode is related to the corresponding generalized

eigenvalue by A, = 27 /4/|A|.

III. PERTURBATION PROCEDURE

We now apply the perturbation procedure of Schrodinger
[3] to construct expansions

A6y =D 6"ns $(6) = 6"¢n ©)
n=0 n=0

the convergence of which are studied in [6].
Here, we assume that )\g is a simple eigenvalue with
corresponding eigenvector ¢q for the unperturbed problem

Moo = AoNeoo @)

which simply involves the discrete Laplacian whose eigen-
values and eigenvectors on a rectangle are well known [5].
An eigenvalue of multiplicity m would entail an expansion in
51/™ [7]. As will be seen in what follows, our approximation
scheme will reap big dividends from the symmetry of M [8].

Inserting the expansions (6) into the cigenproblem (5),
collecting terms, and equating the coefficient of each power
of 6 to zero results in

(M - MN)go =0 ®
(M - XoN)p1 = (AN + AoA)éo 9
(M — 2oN)s = (MN + AoA)éy

+ (A2N + XA+ XB)do (10)
(M = XN)¢3 = (M N + AoA)p2

+ (AaN + M A+ X B)o1

+ (AsN + A2A4 + A1 B)do (11)

and so forth. Equation (8) together with the normalization
($o, Npo) = 1 yields Ao = (¢o, M o). Note that (M — Ao N)
is singular (in fact, its nullity is one by assumption) and that

TABLE 1
CALCULATED CUTOFF WAVELENGTHS COMPARED TO [1]

[Mode | X [ A2 [ XS ]
TEro || 19-21 | 18.90 | 18.69
TEo, | 18.28 | 18.37 | 18.30
TE,, | 12.64 | 12.57 | 12.60
TM,, | 13.69 | 13.63 | 13.60

the symmetry of M implies that the right-hand side of (9)
must be orthogonal to ¢y producing

A1 = —Ao{¢o, Adg).

Thus, the symmetry of M has produced A; without calculating
¢ . Since A is indefinite, A; can be either positive or negative.
Consequently, the perturbation approximation provides neither
lower nor upper bounds for the eigenvalues.

In order to proceed any further, however, we must calculate
¢1 from (9) by performing the QR factorization of (M —AoN)
and then employ it to produce the minimum-norm least-
squares solution, %), to this rank-deficient system [9]. We then
define ¢y := o — (b, N o) o producing {¢1, N¢o) = 0 which
simplifies subsequent computations.

The knowledge of ¢, together with the symmetry of M,
permits the computation of both Ay and As:

A2 = =1 (o, Ao) — Mo{bo, A1 + Beo) (13)
A3 = =A2(do, Ado) — A1({do,2A¢1 + Beo) + (¢1, No1))
— Ao{¢1, A1 + 2Bdy). (14)

In evaluating the required inner products, we benefit greatly
from the diagonality of N, A, and B.

We can continue indefinitely in this fashion, with each
succeeding term in the expansion for ¢ producing the next
two terms in the expansion for A. If we had reduced this to a
standard eigenvalue problem through multiplication of (5) by
N1, we would have destroyed the symmetry of the operator
and sacrificed this substantial economy of computation. Also,
note that only a single QR factorization is required to produce
all of the modal corrections, ¢y

12)

1IV. EXAMPLE

We now apply the above perturbation procedure to an anal-
ysis of the modal characteristics of the high-power waveguide
cross section shown in Fig. 1. This waveguide has width 100
mm and height 82 mm on the sides and 98 mm at the cen-
ter. Both numerically computed and experimentally measured
cutoff wavelengths for various modes of this structure are
provided in [1].

Fig. 2 displays our first-order approximation to the TM; ;
mode. Table I displays our third-order approximation to the
cutoff wavelengths (in c¢m). In this Table, a superscript of
p, n, and e denotes a perturbation, numerical, and experimental
value, respectively.

In all of our computations, which were performed using
MATLAB®, a coarse 9 x 9 mesh and a fine 17 X 17 mesh were
employed. These results were then enhanced using Richardson
extrapolation [10]. One observes a generally close agreement
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among the results of these three disparate techniques. The mag-
nitude of the discrepancy for the TE; g mode is unexpected
and does not vanish with mesh refinement. In another study
[11], a similar discrepancy was observed between an ‘“‘exact”
finite difference procedure and the results of [1] for the fun-
damental mode. Given the consistency of these discrepancies,
one is lead to question the accuracy of the measured results for
the fundamental mode. It cannot be too strongly emphasized,
however, that only the perturbation procedure developed in
this note yields an analytical expression capable of further
exploitation in the engineering design process.

V. CONCLUSION

In the preceding sections, we have presented a perturbation
procedure for the modal characteristics of nearly rectangular,
homogeneously filled, cylindrical waveguides. This procedure
has been validated against published numerical and experi-
mental data. The resulting closed-form expressions are then
available for waveguide optimization studies.

Although the focus of this note has been on nearly rectangu-
lar waveguide cross sections, the procedure described herein
is also applicable to small perturbations of other canonical
domains, such as circular cross sections, for which the modes

are known [4] and numerical procedures for the required
conformal mapping are available [12].
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